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For radiative transfer problems involving both optically thick and thin regions, it is 
suggested that a coupled diffusion-transport treatment has certain advantages in numerical 
treatments. The well known Marshak (Milne) boundary treatment is extended in a straight- 
forward way to give the connecting conditions at the diffusion-transport interface. It is 
found that these conditions give a diffusion radiative flux from a blackbody in excess of the 
physical blackbody limit. The Marshak conditions are modified to correct this discrepancy 
and the resulting diffusion description is found to be quite accurate for grey, as well as 
black, bodies. A previously suggested diffusion-transport interface treatment, due to Brock- 
way, is discussed and shown to be a certain finite difference analogue of the unmodified 
Marshak treatment. The modification needed to give the correct black-body limit is applied 
to the Brockway formulation. The previously suggested interpretation of the Brockway 
equations in terms of probabilities leads to conceptual difficulties, and it is shown that 
such an interpretation is not needed to successfully apply these interface conditions. 

1. TNTRODUCTI~N 

In the vast majority of radiative transfer problems, the well known equation of 
radiative transfer, together with the assumption of local thermodynamic equilibrium, 
is considered to be an accurate description of the interaction of radiation with matter. 
Unfortunately, this equation is sufficiently complex to prohibit analytic solutions for 
all but very simple problems. The numerical solution of this equation is also difficult. 
If photon scattering is an important interaction, then the equation of radiative transfer 
is an integro-differential equation. Even in the absence of scattering, the coupling of 
the radiation field to the material (temperature) field, as well as geometric consider- 
ations, give rise to difficulties in a numerical solution. 

Because of this complexity, it is common to employ approximations to the equation 
of transfer. One of the more widely used approximations is the diffusion, or P - 1, 
description. This follows from the equation of transfer by describing the angular 
dependence of the radiative intensity through its spherical harmonic components, 
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and truncating the corresponding spherical harmonic expansion after a few terms. 
For optically thick, near thermodynamic equilibrium, problems the diffusion descrip- 
tion is particularly appropriate. In this type of problem, the radiative intensity is 
known apriori to be nearly isotropic, and hence is accurately represented by a low 
order spherical harmonic expansion. Further, for this class of problems a numerical 
solution of the equation of transfer is difficult. In a deterministic (finite difference) 
solution of the equation of transfer, this difficulty is manifested in the need for many 
zones, or mesh points. This need arises because accuracy considerations dictate that 
the zone size be near that of a photon mean free path, and in an optically thick 
situation the size of the problem is, by definition, many mean free paths. In a stochastic 
(Monte Carlo) solution, the difficulty arises in the time required to track the photons. 
One has many absorptions and re-emissions, the effects of which tend to cancel. 
To gain adequate statistics, one needs track an inordinately large number of photons. 

In this paper we will be concerned with problems which involve both an optically 
thin (transport) region and an optically thick (diffusion) region. A conceptually 
attractive method of solution for a problem of this type would be to use the equation 
of transfer as the description in the thin region, and the diffusion equation as the 
description in the thick region. The question then arises as to how to connect these 
descriptions at the transport-diffusion interface. It is this interface problem that 
we shall specifically address. It should be noted that the placement of a diffusion- 
transport interface is somewhat arbitrary. In a general problem there is no sharp 
position beyond which diffusion theory is obviously an adequate description. Even 
if one identifies a diffusive region, the interface placement still requires discussion. 
Ideally, one would like to place this interface several mean free paths into the diffusive 
region to assure a smooth transition across it. For multigroup problems, this is 
impractical because of the strong group dependence of the mean free path. That is, 
one would have to introduce an interface position which is group dependent. For 
problems involving hydrodynamic motion, it would be extremely difficult to maintain 
the transport-diffusion interface a few mean free paths into the diffusive region, 
even if one allowed a group dependence. This is because the hydrodynamics is 
continually changing the mean free path, as well as the location of the diffusive region. 
Thus, as a practical matter, the transport-diffusion interface must generally be placed 
at a material boundary, separating a highly absorbing (thick) region from a weakly 
absorbing (thin) region. 

In the next section we briefly review the equation of transfer and the diffusion 
approximation, for the purpose of establishing notation and giving a starting point 
for the analysis to follow. Section 3 develops the interface condition from a straight- 
forward extension of the Marshak, or Milne, boundary condition commonly used at a 
vacuum boundary in the diffusion description. The analytic solution of a model 
problem points out a basic discrepancy in the Marshak condition. This discrepancy is 
just a manifestation of the inaccuracy of the diffusion description in the vicinity of a 
vacuum boundary, and leads to a radiative flux in excess of the black body limit. 
A modification to the Marshak condition is suggested in the following section to 
remedy this problem. Section 5 discusses a previously suggested treatment of the 



422 POMRANING AND FOGLFSONG 

transport-diffusion interface condition, and points out a conceptual difficulty with 
this earlier approach as presented. However, it is shown that this difficulty is more 
apparent than real, and an alternate interpretation of this earlier approach brings it 
into close conformity with the present (unmodified) method. The paper concludes with 
a summary section. 

The development presented here is restricted, for simplicity, to the grey (mono- 
energetic, or one group) time independent radiative transfer problem in slab geometry. 
The underlying ideas apply to time and frequency dependent (multigroup) problems 
in any geometry. The extension required is only algebraic and offers no conceptual 
difficulties. 

2. THE TRANSPORT AND DIFFUSION DEXRIPTIONS 

We assume a grey equation of transfer with an isotropic phase function describing 
the scattering. At steady state in slab geometry we have [l] 

where I(T, p) is the specific intensity of radiation, r(7) is the material temperature, 
B(T) is the single scatter albedo, and the distance 7 is measured in mean free paths. 
We assume there is a left hand boundary at T = 0. The boundary condition on Eq. (I) 
at T = 0 is that the incoming angular intensity is known, i.e., 

where F+(p) is a known, specified, function. A similar boundary condition applies 
at the right hand boundary, say T = b. Equation (I), together with the boundary 
conditions at T = 0 and T = b, constitute the transport description of radiative 
transfer. 

To obtain the diffusion approximation, we expand the specific intensity in Legendre 
polynomials in ~1, and carry only the first two terms, i.e., 

‘tT, PL) = + e4(T) + -& @(T) + . . . 

where O(T) is the radiation temperature and F(T) is the radiative flux. Computing the 
27r solid angle (hemispherical) right and left going fluxes, we have, from Eq. (3), 

P(T) SE 2Tr I ’ 6 I p I I(T, p) = C@(T) - &F(T). (5) 
-1 
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The total, or net, flux is given by the difference of these two quantities, namely 

F(T) = F+(T) - F-(7) = 277 J;l dp pZ(7, #Lb). (f-5) 

Using Eq. (6) in Eq. (4), we can express the right going flux in terms of the radiation 
temperature and the left going flux, i.e., 

F+(7) = 2084(7) - F-(7). (7) 

Similarly, using Eq. (7) in Eq. (6) we can express the net flux in terms of the radiation 
temperature and the left going flux, i.e., 

F(7) = 2[&4(7) - F-(7)]. (8) 

Equations (7) and (8) will be important in our discussion of a previously suggested 
treatment of a transport-diffusion interface, given in Section 5. 

The diffusion description follows by using Eq. (3) in Eq. (1) and forming the first 
two angular moments. The result is: 

- ; T + [l - i;(7)] P(T) = [l - G(T)] P(T). (9) 

We require boundary conditions on Eq. (9). We assume there is a right hand 
boundary at 7 = 0, with a known angular distribution incident upon the system 
given by r-(p), i.e., 

m /-4 = r(p), p < 0. (10) 

Thus the incident flux at T = 0, Fine , is given by 

This incident flux is just the left going flux at T = 0, previously denoted by F-(O) 
in Eq. (5). Thus we have 

UP(O) - $F(O) = Fiinc, (12) 

or using Fick’s law of diffusion in Eq. (12) 

(94(O) + 2 2e4(o) FilW 

37=-' u (13) 

Equation (13) is the appropriate boundary condition at Q- = 0 for the diffusion 
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equation. It is often referred to as the Marshak, or Milne, condition, particularly 
when Fine = 0, i.e., no flux impinging upon the surface. In this case (a vacuum 
boundary), Eq. (13) gives the familiar diffusion result for the linear extrapolation 
distance, namely two-thirds of a mean free path. A similar boundary condition 
applies at the left hand boundary, say T = a. Equation (9), together with the boundary 
conditions at 7 = 0 and 7 = a, constitute the diffusion description of radiative 
transfer. This diffusion description is sometimes referred to as the two-temperature 
description since it involves the material temperature L’(T) as well as the radiation 
temperature &T). This is in contrast to the cruder diffusion approximation, called 
equilibrium, or one-temperature, diffusion in which one assumes local equilibrium 
between material and radiation, i.e., 

e(T) = T(T). (14) 

In this case, the radiative flux is simply given by 

f’(T) = 4a dT4(T) 
3 dr ’ (15) 

We are concerned with two-temperature diffusion in this paper. 

3. THE MARSHAK INTERFACE CONDITION 

We now turn to the problem of formulating the interface conditions at a transport- 
diffusion interface. We take this interface to be at T = 0. To the left of the interface 
(r < 0) we assume the problem is described by the diffusion equation, namely Eq. (9) 
and to the right (T > 0) we assume a transport description according to the equation 
of transfer, Eq. (1). A straightforward application of the boundary conditions 
described in the last section gives the connecting conditions for these two descriptions 
at 7 = 0. 

We first consider the diffusion region. The boundary condition at 7 = 0 is given by 
Eq. (13). The incident flux Fine will just be the flux leaving the transport region. 
We call this Ftran (to emphasize that it arises from the transport region), and thus we 
have as the diffusion boundary condition at T = 0 

eye> + 2 ae4(o) &an 
3r=- u 

where Ftran is given by 

(16) 

Here Z(0, p) is the radiative intensity as computed for 7 3 0 in the transport region. 
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The boundary condition at 7 = 0 for the transport region is given by Eq. (7). 
The incident intensity r+(p) at T = 0 isdue to the leakage from the diffusion region 
into the transport region. This leakage is just F+(O), given by Eq. (4), i.e. 

F+(o) = d?(O) + &F(O), v-9 

or, using Fick’s law of diffusion, 

2 aeyo) F+(O) = (J p(o) - 3 -y-J. 

Here e4(0) and N4(0)/& are the fourth power of the radiation temperature and its 
derivative as computed for T < 0 in the diffusion region. For the boundary condition 
on the transport region, we need specify not only the flux entering the system, but also 
its angular distribution. If we assume an isotropic distribution in the forward hemi- 
sphere, we then have as the boundary condition on the transport region 

Z(0, p) = F+(o) = AT. pl4(0) - ; q@], 
7r T 7 

p > 0. (20) 

This assumption of hemispherical isotropy is reasonable for several reasons. In the 
first place, it is the simplest angular distribution. Secondly, it is consistent with the 
diffusion region exit angular distribution in the limit of a vanishing small net flux at 
7 = 0 (only in this limit is the diffusion approximation rigorously accurate). In 
addition, in the important limit of the diffusion region radiating as a black body this 
assumption of hemispherical isotropy is exact since black bodies radiate isotropic 
radiation. Finally, it should be noted that the overall solution in the transport region 
is relatively insensitive to the angular distribution of the incoming radiation. The 
important parameter is the incoming flux, which Eq. (20) gives correctly. 

A slightly more complex alternative to Eq. (20) is 

~(0, p) = f [eye) - p q], (21) 

which utilizes the full diffusion theory angular dependence. Equation (21) would 
obviously be more appropriate if the transport-diffusion interface were placed several 
mean free paths into the diffusion region. For reasons already mentioned, such a 
placement is generally impractical. If one accepts as a practical necessity the placement 
of the transport-diffusion interface at a material boundary, then Eq. (20), which gives 
the proper black body angular distributoin, seems preferable. The choice of either 
Eq. (20) or (21) does not affect the discussion to follow concerning the boundary 
condition on the diffusion region, which is the main concern of this paper. 

Equations (16) and (20) or (21) are the interface conditions that arise naturally 
from the Marshak-Milne condition at the transport-diffusion interface. One property 
that these matching conditions, together with the transport and diffusion equations, 
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must satisfy if they are to constitute a reasonable calculational scheme is the equi- 
librium property. That is, they must give the correct equilibrium solution for an 
infinite medium at a constant material temperature T. This equilibrium solution is the 
Planck distribution, B(v, T), at all points, and this must be the case for arbitrary 
material properties, i.e., for i;)(7) an arbitrary function of T. It is easily verified that 
these equations possess this property. 

We note that the diffusion description, Eqs. (9) and (16), can be written in an 
alternate, but equivalent, way. Since these equations are linear in d4(7), the solution 
can be decomposed into two components, one corresponding to the emitted radiation 
associated with the material temperature, and one corresponding to the incident flux 
Ftra, . That is, Eqs. (9) and (16) are entirely equivalent to writing 

e4c4 = 814(4 + ez4(T), (22) 

where O,(T) satisfies the inhomogeneous equation 

- ; v + [l - G(T)] &l(T) = [l - i;(T)] T4(T), (23) 

with the homogeneous boundary condition 

e 4(O) 
1 

+ 2 w4m - 0 

3 aT - ’ 

and e,(T) satisfies the homogeneous equation 

_ I a2g240 + ~1 _ qT)] e2yT) 
3 aT2 

with the inhomogeneous boundary condition 

2 ae2yo) &an e,yo) + 3 a = ~ . 
7 cl 

zz 

(24) 

= 0, (25) 

(26) 

That these equations are correct is clear physically, and is easily demonstrated 
mathematically. Adding Eqs. (23) and (25) gives Eq. (9), and adding Eqs. (24) and (26) 
gives Eq. (16). This alternate description gives, of course, the proper equilibrium 
solution since it is entirely equivalent to the composite description, Eqs. (9) and (16). 

In general, the transport and diffusion problems must be solved simultaneously 
since the solution in one region contributes the boundary condition to the other. 
As a concrete example of our considerations, however, we consider a problem where 
a decoupling of the transport and diffusion solutions occur and, further, where each 
solution can be obtained analytically. Specifically, we consider two semi-infinite 
halfspaces with a common interface at 7 = 0. The right halfspace (T > 0) is a pure 
absorber or blackbody (G = 0) with a constant fixed temperature T+ . This halfspace 
is described by transport theory. The left halfspace (T < 0) contains scattering 
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(G # 0), but the single scattering albedo, ~5, is independent of T. In this left halfspace, 
described by diffusion theory, we assume a different constant and fixed temperature T-. 

For this problem, the transport solution for p < 0 can be computed without 
reference to the rest of the problem. Having this one can compute the exit flux from 
the transport region, Ftran , which is required to specify the boundary condition on the 
diffusion region. The diffusion region can then be solved completely, including the 
boundary (T = 0) values for e4 and a19~/& needed for the transport boundary con- 
dition. With the transport boundary condition in hand, one can complete the solution 
in the transport region (i.e., obtain the solution for p > 0). It should be noted that the 
exact transport solution (i.e., treating both regions as transport regions) for this 
problem is available in the literature. In particular, if one is interested in the net flux 
transmitted from the left halfspace to the right halfspace, we have 

F(0) = co(Td4 - T+4), (27) 

where E is the emissivity of the left halfspace (e = 1 for the right half-space since by 
assumption it is a blackbody, i.e., i;, = 0). We shall return to Eq. (27) shortly. 

Omitting the straightforward algebraic detail, we find that the solution in the 
diffusion region is given by 

e’(T) = e14(T) + tiz4(T) 

= Te4 + (Tt4 - (28) 

In particular, the flux leaving the diffusion region, F+(O), is then given by Eq. (19) as 

F+(O) = u [T-4 + (1 - +,(I + $) (7-+4 - P)]. 

The solution in the transport region is 

In constructing this solution, we have used Eq. (20) as the transport boundary 
condition. 

It is easily verified, when T+ = T- , i.e., when the entire problem has a fixed, 
uniform, temperature, that the solution just constructed is the proper equilibrium 
solution. This is consistent with our earlier observation that the Marshak interface 
conditions lead, in general, to the proper thermodynamic equilibrium solution. 
Computing the net flux across the interface at 7 = 0, we find 

F(0) = F+(O) - F-(O) = u ($,(I + $j-'(T-' - T+4). (31) 
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Comparing this with the exact transport result, Eq. (27), we see that E, defined as 

c = ($)( 1 + $,-l, 

is just an approximation to emissivity for the left halfspace. It is an approximation 
because it was obtained by using a diffusion, rather than the correct transport, 
description in the left halfspace. 

The emissivity as a function of G is available, from numerical transport calculations, 
in the literature [2]. Table 1 compares E and 2 as a function of ii. We see that c, the 
diffusion approximation for the emissivity, is somewhat larger than the exact value. 
As expected, for B near unity, E is most accurate (since the diffusion description is 
most accurate for highly scattering media). Unfortunately, in most practical problems, 
the diffusion region is almost always a highly absorbing medium (B m 0). In parti- 
cular, for a blackbody (G = 0), we see 2 = 1.072, which implies that a diffusion 
calculation overestimates the radiation from a blackbody by 7.2 %. In the next 
section, we suggest a modification to the Marshak (Milne) interface conditions which 
corrects this deficiency of diffusion theory. 

Before doing this, however, we discuss this problem with the Marshak boundary 
condition from another point of view which is closely tied to the numerical implemen- 
tation of these equations. Specifically, the decomposition of the diffusion equation 
into two components, e,(7) and &,(T), suggests an attractive way to proceed numer- 
ically. Consider, for simplicity of argument, a purely absorbing diffusion region 
(i; = 0). Since Eqs. (25) and (26) for &(T) are the diffusion description corresponding 
to an incoming flux Ftran incident upon a zero temperature region, they suggest 
intuitively that their solution would correspond to absorbing the incoming photons 
into the diffusion region according to the diffusion kernel exp(- v’/J 1 7 I). In this way 
the incoming photons would contribute to the material field. Equation (23) and (24) 
for O,(T) then dictate a diffusion solution with the established material field in the 
diffusion region with a homogeneous (vacuum) boundary condition at 7 = 0. One 
finds, however, that this numerically attractive procedure is not equivalent to solving 
the equations as stated. In particular, a numerical experiment which applied this 
procedure to a problem initially at thermodynamic equilibrium (and which, 
physically, should remain at thermodynamic equilibrium) gave the result that this 
equilibrium was not maintained. A new steady state was established which exhibited 
a radiation energy gradient in the vicinity of the transport-diffusion interface. This 
physically incorrect behavior is traced back to the fact that the inhomogeneous 
boundary condition, Eq. (26) does not correspond to the intuitive procedure of 
absorbing all of the incident photons in a purely absorbing medium according to 
exp(- 1/5 1 7 I). The absorption, as predicted by Eqs. (25) and (26) is, in fact, greater 
than the incident flux. Since diffusion theory conserves energy, this excess absorption 
leads to a negative reflected flux. That is, the diffusion description, Eq. (25) with the 
usual Marshak (Mime) boundary condition, Eq. (26), does not lead to the physically 
correct result of absorption of all photons incident upon a blackbody. Another 
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manifestation of this basic error of diffusion theory with the Marshak boundary 
condition was noted earlier; namely a black body will radiate, according to this 
diffusion description given by Eqs. (23) and (24) in excess of the physical blackbody 
limit. This excess radiation precisely cancels the negative reflected flux referred to 
above, so that the composite equations (i.e., those of ~9~ = ~9,~ + 0,4) do give the 
proper equilibrium solution, i.e., a hemispherical flux in each direction at 7 = 0 of 
aT4. However, upon breaking the right going flux into its two components (corre- 
sponding to BI and O.J, one finds, as noted above, that each component is in error, 
with the errors being of equal magnitude (7.2 %), but differing in sign. Thus, with the 
Marshak interface condition, it is incorrect to apply the intuitive procedure of 
depositing all the flux incident upon the diffusion region. For consistency with the 
equations, one must deposit 1.072 times the incident flux, a procedure unappealing 
to one’s physical intuition. 

In the next section we suggest a modification to the Marshak interface condition 
with corrects this error in each component. This allows a numerical scheme to be 
based upon the intuitive notion, referred to above, of depositing the photons incident 
upon the diffusion region according to exp(- ~‘3 I T I), and having this procedure 
to be entirely equivalent to solving the diffusion equation with the modified boundary 
condition. The second component of the radiation field, namely that corresponding 
to a heated body radiating into a vacuum, will then exhibit, with the modified 
boundary condition, the correct behavior of radiating a flux given by aT4 in the 
blackbody limit. 

4. A MODIFICATION TO THE MARSHAK INTERFACE CONDITION 

We assume we wish to retain the diffusion equation as the description of the left 
halfspace. We also assume that the quantity of prime interest is the net flux crossing 
the boundary at 7 = 0, the diffusion-transport interface. We modify the interface 
conditions at T = 0 to improve the accuracy of F(0) which, as we have seen, is 
measured by the emissivity of the left halfspace. 

We assume, in order to keep the modified boundary condition simple, that in most 
practical problems the diffusion region is highly absorbing (almost a blackbody). 
Thus our scheme will be to modify the interface conditions so that in the limit of a 
blackbody, the diffusion description will predict an emissivity of unity. The resulting 
interface conditions, while “normalized” to give exact results for a blackbody, are 
meant to apply generally to any 6 and any geometric configuration and temperature 
distribution. As a test of this general applicabliity, we compute, in this modified 
diffusion description, the emissivity as a function of 6. 

The Marshak interface conditions of the previous section followed from the basic 
Marshak expressions for F+(r) and F-(T), given by Eqs. (4) and (5), evaluated at 
7 = 0, i.e., 

P(0) = cxu~yo) + p(o), (33) 

F-(O) = ycd”(0) - U(O), (34) 
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where 

Lx=y=l; p = s = l/2. (35) 

Our procedure will be to ignore Eq. (35), and choose cx, /?I, y, and 6 to improve the 
accuracy of the diffusion description. In particular, we wish to obtain an emissivity 
value of unity for 8 = 0. 

To determine these four constants, we require, in addition to the constraint that 
E = 1 for d = 0, that: (i) energy is conserved, and (ii) the proper equilibrium 
solution is obtained. These two conditions, together with the requirement that E 
(B = 0) = I, uniquely determine LY, /I, y, and 6. Considering first energy conservation, 
we note that the net flux, F(O), is just the difference of F+(O), i.e., 

F(0) = F+(O) - F-(O). (36) 

If we require that our interface conditions conserve energy, Eqs. (33), (34), and (36) 
yield 

/3+s=1. (37) 

We now consider equilibrium, by which we mean an infinite medium at a uniform 
material temperature T. The specific intensity in this case is given by 

[(T, p) = q, (38) 

and the flux in any 27~ solid angle is then given by 

the blackbody flux. In particular, F+(O) and F-(O) must obey Eq. (39), and since the 
net flux F(0) = 0, Eqs. (33) and (34) give 

cu=y=l. W) 

Using Eqs. (37) and (40), Eqs. (33) and (34) become 

F+(O) = d4(0) + (1 - s)F(O), (41) 
F-(O) = d4(0) - 6F(O). (42) 

We determine the remaining unknown 6 by demanding that E(& = 0) = 1. We note 
that in the Marshak treatment 6 = l/2. 

Rewriting Eqs. (41) and (42) in the manner previously employed in going from 
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Eqs. (4) and (5) to Eqs. (16) and (20), we find that the modified boundary condition 
on the transport region is 

Z(0, p) = f [P(O) - ; (I - 6) T], p > 0, 

and the modified boundary condition on the diffusion region is 

64(O) + 4 (y ae4(o) &an -=- 

3 a7 u ' 

(43) 

(44) 

with the constant 6 still to be determined from the condition E(G = 0) = 1. The 
similar modification to Eq. (21) yields 

a84(0) m j.4 = f [ e40a - w - s> P 71: p > 0. (45) 

Applying Eq. (43) and (44) to the problem previously considered (two semi-infinite 
halfspaces with a common interface at T = 0, and each with a fixed, constant 
temperature), we find for the net flux at 7 = 0, omitting the algebraic details, 

F(0) = oEn(Tp4 - T+4), (46) 

where the emissivity, C, is given by 

(47) 

For (;, = 0 (a blackbody), we have K = q/3, and thus the requirement that 
2(ii2 = 0) = 1 gives 

6 = 1 - i? = 0 5670 4 . * (48) 

This is to be compared with 6 = l/2 for the usual Marshak treatment. 
Table 1 compares 2, as given by Eq. (46) with 6 fixed (independent of S) according 

to Eq. (48), with the exact transport emissivity. We see that the modified interface 
condition gives quite accurate results for the emissivity, and hence the net flux at 
T = 0, for all values of 8. We could have forced exact agreement, in our model 
problem, for all t by allowing 6 to be a function of c%, but this complexity is probably 
not warranted. If we had allowed 6 to depend upon Cz in this way, it would not be 
clear what value to assign to ii in the general case of i;, depending upon position, and 
in addition we would have no assurance of exact results when the temperature profile 
depended upon position. 
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TABLE I 

Comparison of the Exact Emissivity with Two Approximate Formulations 

t 

0 1.732 1.072 1.000 1.000 

0.1 1.643 1.046 0.977 0.979 

0.2 1.549 1.016 0.951 0.954 

0.3 1.449 0.983 0.922 0.926 

0.4 1.342 0.944 0.888 0.892 

0.5 1.225 0.890 0.848 0.854 

0.6 1.095 0.844 0.799 0.805 

0.7 0.949 0.775 0.737 0.744 

0.8 0.775 0.681 0.651 0.658 

0.9 0.548 0.535 0.516 0.522 

0.92 0.490 0.492 0.477 0.482 

0.94 0.424 0.441 0.428 0.433 

0.96 0.346 0.375 0.366 0.369 

0.98 0.245 0.281 0.276 0.278 

0.99 0.173 0.207 0.204 0.205 

1.00 0.000 0.000 0.000 0.000 

K t ; E 

Use of Eq. (48) in Eq. (44) in the case of no incident flux, i.e., Ftran = 0, gives 

P(O) + 0.7560 T = ae4m 0 3 

which implies an “extrapolated endpoint” or “linear extrapolation distance” of 
0.756 mean free paths, as contrasted to the value of 213 as predicted by the Marshak 
condition, and the classic value of 0.7104 for the transport solution of the Milne 
problem (a purely scattering halfspace with a source at infinity). 

Since this modification to the interface conditions was obtained by requiring that 
the diffusion predicted emissivity be unity for a black-body, one can now solve these 
equations in the intuitive manner referred to at the end of the last section. That is, 
the incident flux is deposited into the diffusion region according to the diffusion 
kernel exp(- 1/3 1 T I), and the contribution to the radiation field arising from the 
non-zero temperature in the diffusion region is found by solving the diffusion equation 
subject to the modified vacuum boundary condition, Eq. (49). This “deposition” 
method of solution, convenient from a numerical point of view, is entirely equivalent 
to solving the diffusion equation, together with the modified boundary conditions, 
as stated. The numerical experiment mentioned previously was redone using these 
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modified interface conditions and the proper thermodynamic equilibrium was 
maintained, as expected from the above argument. 

In closing this section, we mention that for the model problem we solved analytically 
to obtain Eq. (47) the modified interface conditions lead to exact transport results 
for Z(T, p) in the transport region. 

5. THE BROCKWAY INTERFACE CONDITION 

Brockway [3] has earlier suggested a treatment of the connecting conditions at a 
transport-diffusion interface. The Brockway conditions are currently being used to 
connect transport and diffusion regions in large radiative transfer problems. He 
basically used the Marshak expressions for F+ and F- as given by Eqs. (4) and (5), 
but in a particular finite difference, rather than the differential equation, setting. By 
straightforward algebraic manipulation, he arrived at the equations 

F(O) = S(oe:, - Ftrd (50) 

F+(O) = SC& + RFtran. (51) 

Here O,, is the radiation temperature at the zone center of the first diffusion zone, 
and the coefficients S and R are given by 

413 
'= 2/3+dr' (52) 

(53) 

where 24~ is the optical thickness of the first diffusion zone. Because of the position 
of these coefficients S and R in Eqs. (50) and (51) Brockway argued that S plays the 
role of a transmission coefficient, and R plays the role of a reflection coefficient. 
He then concluded that a transport-diffusion boundary can be treated by: (i) emit a 
flux S&t, from the boundary into the transport region, and (ii) when a photon from 
the transport region reaches the boundary, absorb (transmit) an amount SFtran into 
the diffusion region and reflect (or re-emit) an amount RFtr back into the transport 
region. As suggested by this wording, Brockway’s considerations were within the 
context of a Monte Carlo transport treatment. 

We note that in the limit 4~ = 0 (i.e., the differential equation limit), Brockway’s 
equations reduce to the Marshak equations given in Section 2, namely Eqs. (7) and (8) 
evaluated at T = 0, noting that F-(O) = Ft,,,, . Since our considerations of Section 3 
were also based upon those same Marshak equations, there must be a close corre- 
spondence between Brockway’s scheme and our (unmodified) scheme. We address 
this point very shortly. 

We note that in this limit 47 = 0, we have, from Eqs. (52) and (53) 

s = 2; R = -1. (54) 
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That is, the transmission coefficient becomes two, and the reflection becomes minus 
one. Clearly the interpretation of these quantities as probabilities leads to conceptual 
difficulties in the diffusion equation limit (AT = 0). Numerically, this negative 
reflection has been handled by using a portion of the positive flux emitted from the 
surface, namely SOB,, , to “cancel” the negative reflection, RFtran , and thereby, in 
effect, emitting only the difference. This numerical procedure, which works well, 
gives the resolution to this apparent conceptual difficulty. There is no need to interpret 
each term in Eqs. (50) and (51) as a reflected or transmitted flux (although there may, 
for large LIT, be some heuristic value in such an interpretation). Those equations only 
require that the net flux F(0) and the positive direction flux F+(O) each be given by 
the sum of two terms. Giving each of these two terms a separate physical significance 
is unnecessary. The numerical cancelation is, in fact, entirely consistent with these 
two equations. 

We conclude that the conceptual difficulty of the Brockway scheme is more 
apparent than real, and that this scheme, since is based on the same Marshak 
equations, is entirely equivalent to the scheme we presented in Section 3 (with the 
obvious distinction of course, that the Brockway equations are a certain finite 
difference representation of the differential interface conditions). This observation 
also leads to the conclusion that the modified interface conditions of the last section 
could be implemented either by the deposition scheme previously discussed or by 
extending the Brockway finite difference approach to incorporate the modifications 
we have suggested in the differential equation context. 

Using Eqs. (41) and (42) as the starting point and following the algebraic approach 
of Brockway, one finds that the modified finite difference equations are again of the 
Brockway form, Eqs. (50) and (51) but in this case the quantities S and R are given 
by (we prefer not to call these quantities transmission and reflection coefficients for 
reasons already mentioned), 

' = (48,3;': AT ’ 

R=l-Sz AT - 4(1 - 6)/3 
(46/3) + AT * 

(55) 

Since Brockway’s considerations are not available in the literature, we sketch the 
detail which leads to Eqs. (55) and (56). Equations (41) and (42), together with 
Eq. (6), can be rewritten 

F(O) = F+(O) - Ftran , (57) 

F+(o) = ue*4 + (1 - 6) F(O), (58) 

where we have use F-(O) = Ftran and set 0(O) = 0, , the boundary value of the 
radiation temperature. Eliminating F+(O) between Eqs. (57) and (58) gives 

F(0) = ; (~0,~ - I&n). (59) 
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Now, a finite difference form of Fick’s law is 

(60) 

where 19,~ is the radiation temperature at the center of the first diffusion zone. 
Equating Eqs. (59) and (60) gives 

4s/3 eB4 = [ (46/3) + LIT ] et, + [ (4s,& J ?, 

which gives the boundary temperature in terms of the zone-centered temperature. 
Use of Eq. (61) in Eq. (59) gives 

413 
F(o) = [ (46/3) + LIT 1 (d2, - cranh 

and use of Eq. (62) in Eq. (58) gives 

FT(o) = [ (4613;': AT ] uetc + [ 47 - 4(1 - w3 Ftran 
(46/3) + LIT I . (63) 

Equations (62) and (63) correspond to the Brockway forms, Eqs. (50) and (51), with 
S and R given by Eqs. (52) and (53). 

Which of these two equivalent interface treatments (i.e., the deposition scheme as 
discussed in the last section or the modified Brockway scheme just presented) is better, 
in the practical sense of numerical efficiency in solving real problems, has yet to be 
determined. Undoubtedly, the answer to this question depends upon the details of 
the numerical approach used, and may well be problem dependent as well. In this 
regard, it should be noted that the finite difference equations of Brockway, or our 
modification, resulted from one particular finite difference approach, namely Eq. (60). 
Other finite difference forms are obviously also possible. 

6. CONCLUDING REMARKS 

In this paper we have suggested the use of a coupled transport and diffusion 
treatment for certain radiative transfer problems. Specifically we addressed the 
treatment of the boundary (connecting) conditions at a transport-diffusion interface. 
The straightforward extension of the Marshak (Milne) boundary condition at an 
exterior (vacuum) boundary led to a self-consistent mathematical description of the 
interface problem. However, it was shown that this boundary treatment over- 
estimates the radiation from a blackbody. A manifestation of this basic discrepancy 
in the Marshak treatment is, in addition to this excess blackbody radiation, a negative 
reflection of photons from a blackbody. These observations led us to modify the 
Marshak boundary conditions in such a way that the emissivity of a blackbody, 
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as predicted by diffusion theory, is unity, and the reflection from a black-body is 
accordingly zero. 

The Brockway finite difference boundary conditions, previously suggested as the 
interface conditions, were shown to correspond to a certain finite difference represen- 
tation of our unmodified differential equation considerations. In the limit of infinitely 
small zones (the differential equation limit), Brockway’s scheme and our modification 
to it are equivalent to the Marshak considerations, including the modification, 
presented here. 

We have preliminarily tested these connecting conditions, both analyticaliy and 
numerically, and find them to behave as expected. In particular, for problems involving 
optically thin regions, analytic calculations have shown that this transport-diffusion 
description can be significantly more accurate than a pure diffusion solution. 
Numerically, both the deposition approach and the Brockway equations have been 
used successfully in test problems. As mentioned earlier, we have numerically 
confirmed that the pure Marshak connecting conditions do not lead to the proper 
thermodynamic equilibrium in the deposition method, while the modified Marshak 
conditions do. 

At this time we do not have a definitive recommendation as to the best way to 
implement these interface conditions into general purpose radiative transfer codes. 
Such an implementation will, of course, depend heavily upon the detaiIs of the finite 
difference or other numerical approximations contained in a given code. Because of 
this, the “best” numerical treatment of these interface conditions will be code 
dependent, and undoubtedly much experimentation will be required to find the 
optimum treatment for a given code. In any event, it seems probable that improved 
accuracy will result for a wide class of problems from the use of the modified Marshak 
conditions discussed here. This should be the case if the modified Marshak treatment 
is used in the transport-diffusion context, or at a vacuum boundary in a pure diffusion 
calculation. 
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